Hedgehog signaling in the Drosophila eye and head: an analysis of the effects of different patched trans-heterozygotes.
نویسندگان
چکیده
Characterization of different alleles of the Hedgehog receptor patched (ptc) indicates that they can be grouped into several classes. Most mutations result in complete loss of Ptc function. However, missense mutations located within the putative sterol-sensing domain (SSD) or C terminus of ptc encode antimorphic proteins that are unable to repress Smo activity and inhibit wild-type Ptc from doing so, but retain the ability to bind and sequester Hh. Analysis of the eye and head phenotypes of Drosophila melanogaster in various ptc/ptc(tuf1) heteroallelic combinations shows that these two classes of ptc allele can be easily distinguished by their eye phenotype, but not by their head phenotype. Adult eye size is inversely correlated with head vertex size, suggesting an alteration of cell fate within the eye-antennal disc. A balance between excess cell division and cell death in the mutant eye discs may also contribute to final eye size. In addition, contrary to results reported recently, the role of Hh signaling in the Drosophila head vertex appears to be primarily in patterning rather than in proliferation, with Ptc and Smo having opposing effects on formation of medial structures.
منابع مشابه
The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملA positive role for patched-smoothened signaling in promoting cell proliferation during normal head development in Drosophila.
The transmembrane receptor Patched regulates several developmental processes in both invertebrates and vertebrates. In vertebrates, Patched also acts as a tumor suppressor. The Patched pathway normally operates by negatively regulating Smoothened, a G-protein-coupled receptor; binding of Hedgehog ligand to Patched relieves this negative interaction and allows signaling by Smoothened. We show th...
متن کاملLigand-independent activation of the Hedgehog pathway displays non-cell autonomous proliferation during eye development in Drosophila
Deregulation of the Hedgehog (Hh) signaling pathway is associated with the development of human cancer including medullobastoma and basal cell carcinoma. Loss of Patched or activation of Smoothened in mouse models increases the occurrence of tumors. Likewise, in a Drosophila eye model, deregulated Hedgehog signaling causes overgrowth of eye and head tissues. Surprisingly, we show that cells wit...
متن کاملDpp and Hh signaling in the Drosophila embryonic eye field.
We have analyzed the function of the Decapentaplegic (Dpp) and Hedgehog (Hh) signaling pathways in partitioning the dorsal head neurectoderm of the Drosophila embryo. This region, referred to as the anterior brain/eye anlage, gives rise to both the visual system and the protocerebrum. The anlage splits up into three main domains: the head midline ectoderm, protocerebral neurectoderm and visual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 165 4 شماره
صفحات -
تاریخ انتشار 2003